On statistical strain and stress energy bounds from homogenization and virtual testing
Artikel i vetenskaplig tidskrift, 2015

Computational homogenization for quasistatic stress problems is considered, whereby the macroscale stress is obtained via averaging on Statistical Volume Elements (SVE:s). The variational "workhorse" for the subscale problem is derived from the presumption of weak micro-periodicity, which was proposed by Larsson et al. (2011). Continuum (visco)plasticity is adopted for the mesoscale constituents, whereby a pseudo-elastic, incremental strain energy serves as the potential for the updated stress in a given time-increment. Strict bounds on the incremental strain energy are derived from imposing Dirichlet and Neumann boundary conditions, which are defined as suitable restrictions of the proposed variational format. For this purpose, both the standard situation of complete macroscale strain control and the (less standard) situation of macroscale stress control are considered. Numerical results are obtained from "virtual testing" of SVE:s in terms of mean values and a given confidence interval, and it is shown how these properties converge with respect to the SVE-size for different prescribed macroscale deformation modes and different statistical properties of the random microstructure. In addition, the upper and lower bounds for a sequence of increasing strain levels, for a fixed SVE-size, are used as "data" for the calibration of a macroscopic elastic-plastic constitutive model.

Virtual testing

Computational homogenization

Effective properties


S. Saroukhani

Cornell University

R. Vafadari

Universiteit Gent

Robin Andersson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

Fredrik Larsson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

Kenneth Runesson

Chalmers, Tillämpad mekanik, Material- och beräkningsmekanik

European Journal of Mechanics, A/Solids

0997-7538 (ISSN)

Vol. 51 77-95

Virtuell materialprovning - Ett beräkningsverktyg för att uppskatta makroskopiska materialegenskaper baserat på homogenisering

Vetenskapsrådet (VR) (2010-4482), 2011-01-01 -- 2013-12-31.


Teknisk mekanik





Mer information

Senast uppdaterat