The Briacon-Skoda Number of Analytic Irreducable Planar Curves
Artikel i vetenskaplig tidskrift, 2014

The Briancon-Skoda number of a ring R is defined as the smallest integer k, such that for any ideal I subset of R and l >= 1, the integral closure of Ik+l-1 is contained in P. We compute the Briangon-Skoda number of the local ring of any analytic irreducible planar curve in terms of its Puiseux characteristics. It turns out that this number is closely related to the Milnor number.

residue currents

Briancon-Skoda theorem

Puiseux pairs

Milnor number

Författare

Jacob Sznajdman

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Annales de lInstitut Fourier

0373-0956 (ISSN)

Vol. 64 1 177-187

Ämneskategorier

Matematik

DOI

10.5802/aif.2843

Mer information

Skapat

2017-10-07