Denna avhandling fokuserar på den matematiska modelleringen av dieseloxidationskatalysatorn (DOC) i syfte att utveckla generella och effektiva metoder för katalysatormodellering. Studien omfattar hela förloppet från försöksplanering till skattning av modellparametrar till experimentdata där både fullskaleförsök och labbförsök använts. Effektiv parameterskattning syftar här med andra ord inte endast till parameterskattningsalgoritmen utan stor vikt har också lagts vid de aspekter som skapar goda förutsättningar för parameterskattningen.
Några viktiga resultat från projektet är en specifikt utvecklad detaljerad kinetikmodell, en metod för parameterskattning som inkluderar multivariat dataanalys samt en metod för att skapa transienta försök i motorbänk utan att ändra motorns driftpunkt. Utöver dessa resultat har också ett antal relevanta slutsatser dragits där de viktigaste kan sammanfattas i följande punkter.
• Att inkludera skattning av parametrar som påverkar den inre masstransporten i den matematiska modellen förbättrade möjligheterna att uppnå en bra passning till mätdata
• Om inre masstransport ska modelleras är det av högsta vikt att kinetikmodellen inte innehåller parametrar som kan efterlikna effekterna av masstransportmotstånd
• En detaljerad kinetikmodell förbättrar förutsättningarna för att separera kinetik och masstransport i modellen men ställer också högre krav på experimentunderlag samtidigt som risken för modellinstabilitet ökar
In this thesis the objective was to tune the model parameters of diesel oxidation catalysts (DOC) to measurement data from engine rig experiments in an efficient manner. The scope was however not limited to the algorithm of parameter search alone but instead included the whole process starting with the design of experiments.
Different aspects of efficient parameter estimation of a full scale DOC were evaluated. This included different kinetic models, mass transfer resistance evaluation, experiments at both engine rig and lab-scale, and parameter estimation algorithms. A specially developed detailed kinetic model, a method for parameter estimation using Multivariate Data Analysis, and a method for full scale engine rig experiments were all important products. In addition to these outputs some relevant conclusions were made based on the studies
• Including internal mass transport parameter in the tuning improved the possibilities of achieving a good fit for the catalyst model
• If internal mass transport is to be modeled the kinetic model cannot include parameters mimicking the effects of transport resistance
• A detailed kinetic model improves the conditions for separating kinetics and mass transport but also increases the need for experimental complexity at the same time as model instability may increase