Periodic Table of the Finite Elements
Artikel i vetenskaplig tidskrift, 2014

The finite element method is one of the most powerful and widely applicable techniques for the numerical solution of partial differential equations and, therefore, for the simulation of the physical world. First proposed by engineers in the 1950s as a practical numerical method for predicting the deflection and stress of structural components of aircraft, the method has since been continuously extended and refined. It is now used in almost all application areas modeled by PDEs: solid and fluid dynamics, electromagnetics, biophysics, and even finance, to name just a few. Much as the chemical elements can be arranged in a periodic table based on their electron structure and recurring chemical properties, a broad assortment of finite elements can be arranged in a table that clarifies their properties and relationships. This arrangement, which is based on expression of the finite element function spaces in the language of differential forms, is one of the major outcomes of the theory known as finite element exterior calculus, or FEEC. Just as the arrangement of the chemical elements in a periodic table led to the discovery of new elements, the periodic table of finite elements has not only clarified existing elements but also highlighted holes in our knowledge and led to new families of finite elements suited for certain purposes.

Författare

Douglas N. Arnold

Anders Logg

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

SIAM News

0036-1437 (ISSN)

Vol. 47 9

Ämneskategorier (SSIF 2011)

Matematik

Beräkningsmatematik

Styrkeområden

Building Futures (2010-2018)

Mer information

Skapat

2017-10-07