On scene injury prediction (OSISP) algorithm for car occupants
Artikel i vetenskaplig tidskrift, 2015

Many victims in traffic accidents do not receive optimal care due to the fact that the severity of their injuries is not realized early on. Triage protocols are based on physiological and anatomical criteria and subsequently on mechanisms of injury in order to reduce undertriage. In this study the value of accident characteristics for field triage is evaluated by developing an on scene injury severity prediction (OSISP) algorithm using only accident characteristics that are feasible to assess at the scene of accident. A multi-variate logistic regression model is constructed to assess the probability of a car occupant being severely injured following a crash, based on the Swedish Traffic Accident Data Acquisition (STRADA) database. Accidents involving adult occupants for calendar years 2003–2013 included in both police and hospital records, with no missing data for any of the model variables, were included. The total number of subjects was 29 128, who were involved in 22 607 accidents. Partition between severe and non-severe injury was done using the Injury Severity Score (ISS) with two thresholds: ISS > 8 and ISS > 15. The model variables are: belt use, airbag deployment, posted speed limit, type of accident, location of accident, elderly occupant (>55 years old), sex and occupant seat position. The area under the receiver operator characteristic curve (AUC) is 0.78 and 0.83 for ISS > 8 and ISS > 15, respectively, as estimated by 10-fold cross-validation. Belt use is the strongest predictor followed by type of accident. Posted speed limit, age and accident location contribute substantially to increase model accuracy, whereas sex and airbag deployment contribute to a smaller extent and seat position is of limited value. These findings can be used to refine triage protocols used in Sweden and possibly other countries with similar traffic environments.

Prehospital care

Logistic regression

Postcrash

Triage

Traffic safety

Författare

Ruben Buendia

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Stefan Candefjord

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Helen Fagerlind

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Chalmers, Tillämpad mekanik, Fordonssäkerhet

András Bálint

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Chalmers, Tillämpad mekanik, Fordonssäkerhet

Bengt-Arne Sjöqvist

Chalmers, Vehicle and Traffic Safety Centre at Chalmers (SAFER)

Chalmers, Signaler och system, Signalbehandling och medicinsk teknik

Accident Analysis and Prevention

0001-4575 (ISSN)

Vol. 81 211-217

Drivkrafter

Hållbar utveckling

Styrkeområden

Transport

Ämneskategorier (SSIF 2011)

Annan hälsovetenskap

Transportteknik och logistik

Sannolikhetsteori och statistik

DOI

10.1016/j.aap.2015.04.032

PubMed

26005884

Mer information

Skapat

2017-10-07