A design path for the hierarchical self-assembly of patchy colloidal particles
Artikel i vetenskaplig tidskrift, 2015
Patchy colloidal particles are promising candidates for building blocks in directed self-assembly. To be successful the surface patterns need to be simple enough to be synthesized, while feature-rich enough to cause the colloidal particles to self-assemble into desired structures. Achieving this is a challenge for traditional synthesis methods. Recently it has been suggested that surface patterns themselves can be made to self-assemble. In this paper we present a design path for the hierarchical targeted self-assembly of patchy colloidal particles based on self-assembling surface patterns. At the level of the surface structure, we use a predictive method utilizing the universality of stripes and spots, coupled with stoichiometric constraints, to cause highly specific and functional patterns to self-assemble on spherical surfaces. We use a minimalistic model of an alkanethiol on gold as a demonstration, showing that even with limited control over the interaction between surface constituents we can obtain patterns that cause the colloidal particles themselves to self-assemble into various complex geometric structures, such as strings, membranes, cubic aggregates and colloidosomes, as well as various crystalline patterns.