Zeeman effect in atmospheric O-2 measured by ground-based microwave radiometry
Artikel i vetenskaplig tidskrift, 2015

In this work we study the Zeeman effect on stratospheric O-2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O-2 energy states, which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz. Both a fixed and a rotating mirror were incorporated into the TEMPERA (TEMPERature RAdiometer) in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. Moreover, a high-resolution spectrometer (1 kHz) was used in order to measure for the first time the polarization state of the radiation due to the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements. The measured spectra showed a clear polarized signature when the observational angles were changed, evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The results suggest some interesting new aspects for research of the upper atmosphere.

Författare

F. Navas-Guzman

Universität Bern

N. Kämpfer

Universität Bern

Axel Murk

Universität Bern

R. Larsson

Luleå tekniska universitet

S.A. Buehler

Universität Hamburg

Patrick Eriksson

Chalmers, Rymd- och geovetenskap, Global miljömätteknik och modellering

Atmospheric Measurement Techniques

1867-1381 (ISSN) 1867-8548 (eISSN)

Vol. 8 4 1863-1874

Ämneskategorier

Meteorologi och atmosfärforskning

DOI

10.5194/amt-8-1863-2015

Mer information

Senast uppdaterat

2018-05-14