Energy and exergy analysis of a cruise ship
Paper i proceeding, 2015

The shipping sector is today facing numerous challenges. Fuel prices are expected to increase in the medium-long term, and a sharp turn in environmental regulations will require several companies to switch to more expensive distillate fuels. In this context, passenger ships represent a small but increasing share of the industry. The complexity of the energy system of a ship where the energy required by propulsion is no longer the trivial main contributor to the whole energy use thus makes this kind of ship of particular interest for the analysis of how energy is converted from its original form to its final use on board. To illustrate this, we performed an analysis of the energy and exergy flow rates of a cruise ship sailing in the Baltic Sea based on a combination of available measurements from ship operations and of mechanistic knowledge of the system. The energy analysis allows identifying propulsion as the main energy user (41% of the total) followed by heat (34%) and electric power (25%) generation; the exergy analysis allowed instead identifying the main inefficiencies of the system: exergy is primarily destroyed in all processes involving combustion (88% of the exergy destruction is generated in the Diesel engines and in the oil-fired boilers) and in the sea water cooler (5.4%); the main exergy losses happen instead in the exhaust gas, mostly from the main engines (67% of total losses) and particularly from those not equipped with heat recovery devices. The improved understanding which derives from the results of the energy and exergy analysis can be used as a guidance to identify where improvements of the systems should be directed.

exergy analysis

low carbon shipping

Energy analysis


Francesco Baldi

Chalmers, Sjöfart och marin teknik, Maritim miljövetenskap

Fredrik Ahlgren

Linnéuniversitetet, Kalmar

Tuong-Van Nguyen

Chalmers, Sjöfart och marin teknik, Maritim miljövetenskap

Cecilia Gabrielii

Chalmers, Sjöfart och marin teknik, Maritim miljövetenskap

Karin Andersson

Chalmers, Sjöfart och marin teknik, Maritim miljövetenskap

Proceedings of ECOS 2015 - The 28th international conference on efficiency, cost, optimisation, simulation and environmental impact of energy systems

978-295555390-9 (ISBN)


Hållbar utveckling








Mer information

Senast uppdaterat