Breakdown of the escape dynamics in Josephson junctions
Artikel i vetenskaplig tidskrift, 2015

We have identified anomalous behavior of the escape rate out of the zero-voltage state in Josephson junctions with a high critical current density J(c). For this study we have employed YBa2Cu3O7-x grain boundary junctions, which span a wide range of J(c) and have appropriate electrodynamical parameters. Such high Jc junctions, when hysteretic, do not switch from the superconducting to the normal state following the expected stochastic Josephson distribution, despite having standard Josephson properties such as a Fraunhofer magnetic field pattern. The switching current distributions (SCDs) are consistent with nonequilibrium dynamics taking place on a local rather than a global scale. This means that macroscopic quantum phenomena seem to be practically unattainable for high Jc junctions. We argue that SCDs are an accurate means to measure nonequilibrium effects. This transition from global to local dynamics is of relevance for all kinds of weak links, including the emergent family of nanohybrid Josephson junctions. Therefore caution should be applied in the use of such junctions in, for instance, the search for Majorana fermions.


D. Massarotti

D. Stornaiuolo

P. Lucignano

L. Galletti

D. Born

G. Rotoli

Floriana Lombardi

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

L. Longobardi

A. Tagliacozzo

F. Tafuri

Physical Review B - Condensed Matter and Materials Physics

24699950 (ISSN) 24699969 (eISSN)

Vol. 92 5 054501


Den kondenserade materiens fysik



Mer information

Senast uppdaterat