A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem
Artikel i vetenskaplig tidskrift, 2015

We present a new composite mesh finite element method for fluid-structure interaction problems. The method is based on surrounding the structure by a boundary-fitted fluid mesh that is embedded into a fixed background fluid mesh. The embedding allows for an arbitrary overlap of the fluid meshes. The coupling between the embedded and background fluid meshes is enforced using a stabilized Nitsche formulation that allows us to establish stability and optimal-order a priori error estimates. We consider here a steady state fluid-structure interaction problem where a hyperelastic structure interacts with a viscous fluid modeled by the Stokes equations. We evaluate an iterative solution procedure based on splitting and present three-dimensional numerical examples.

embedded meshes

fluid-structure interaction

cut finite element method

stabilized finite element methods

overlapping meshes

Nitsche's method

Författare

A. Massing

Umea universitet

Mats G Larson

Umea universitet

Anders Logg

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Marie E. Rognes

Simula Research Laboratory

Communications in Applied Mathematics and Computational Science

1559-3940 (ISSN) 2157-5452 (eISSN)

Vol. 10 97-120

Styrkeområden

Building Futures

Ämneskategorier

Beräkningsmatematik

DOI

10.2140/camcos.2015.10.97