A Note on the Importance of Weak Convergence Rates for SPDE Approximations in Multilevel Monte Carlo Schemes
Paper i proceeding, 2016

It is a well-known rule of thumb that approximations of stochastic partial differential equations have essentially twice the order of weak convergence compared to the corresponding order of strong convergence. This is already known for many approximations of stochastic (ordinary) differential equations while it is recent research for stochastic partial differential equations. In this note it is shown how the availability of weak convergence results influences the number of samples in multilevel Monte Carlo schemes and therefore reduces the computational complexity of these schemes for a given accuracy of the approximations.

Stochastic heat equation

Weak error analysis

Multilevel Monte Carlo methods

Stochastic partial differential equations

Finite element approximations

Författare

Annika Lang

Chalmers, Matematiska vetenskaper, Matematisk statistik

Göteborgs universitet

Springer Proceedings in Mathematics and Statistics

21941009 (ISSN) 21941017 (eISSN)

Vol. 163 489-505
978-3-319-33505-6 (ISBN)

Ämneskategorier

Matematik

Beräkningsmatematik

Sannolikhetsteori och statistik

Fundament

Grundläggande vetenskaper

DOI

10.1007/978-3-319-33507-0_25

ISBN

978-3-319-33505-6

Mer information

Senast uppdaterat

2023-08-08