Axisymmetric global gravitational equilibrium for magnetized, rotating hot plasma
Artikel i vetenskaplig tidskrift, 2015

We present analytic solutions for three-dimensional magnetized axisymmetric equilibria confining rotating hot plasma in a gravitational field. Our up–down symmetric solution to the full Grad–Shafranov equation can exhibit equatorial plane localization of the plasma density and current, resulting in disk equilibria for the plasma density. For very weak magnetic fields and high plasma pressure, we find strongly rotating thin plasma disk gravitational equilibria that satisfy strict Keplerian motion provided the gravitational energy is much larger than the plasma pressure, which must be large compared to the magnetic energy of the poloidal magnetic field. When the rotational energy exceeds the gravitational energy and it is larger than the plasma pressure, diffuse disk equilibrium solutions continue to exist provided the poloidal magnetic energy remains small. For stronger magnetic fields and lower plasma pressure and rotation, we can also find gravitational equilibria with strong localization to the equatorial plane. However, a toroidal magnetic field is almost always necessary to numerically verify these equilibria are valid solutions in the presence of gravity for the cases considered in Catto & Krasheninnikov (J. Plasma Phys., vol. 81, 2015, 105810301). In all cases both analytic and numerical results are presented.

accretion disks

global plasma equilibrium

Grad-Shafranov equation

Författare

Peter J. Catto

Istvan Pusztai

Chalmers, Teknisk fysik, Nukleär teknik

Sergei I. Krasheninnikov

Journal of Plasma Physics

0022-3778 (ISSN) 1469-7807 (eISSN)

Vol. 81 06 515810603-

Ämneskategorier

Astronomi, astrofysik och kosmologi

Fusion, plasma och rymdfysik

Fundament

Grundläggande vetenskaper

DOI

10.1017/S0022377815001245

Mer information

Senast uppdaterat

2018-08-31