Unsupervised Segmentation of Head Tissues from Multi-Modal Magnetic Resonance Images: With Application to EEG Source Localization and Stroke Detection
Doktorsavhandling, 2016
stroke
EEG source localization
Image segmentation
reconstruction
magnetic resonance
brain
Författare
Mahmood Qaiser
Chalmers, Signaler och system, Signalbehandling och medicinsk teknik
A Comparative Study of Automated Segmentation Methods for Use in a Microwave Tomography System for Imaging Intracerebral Hemorrhage in Stroke Patients
Journal of Electromagnetic Analysis and Applications,;Vol. 7(2015)p. 152-167
Artikel i vetenskaplig tidskrift
Automated MRI brain tissue segmentation based on mean shift and fuzzy c-means using a priori tissue probability maps
IRBM,;Vol. 36(2015)p. 185-196
Artikel i vetenskaplig tidskrift
Particle Swarm Optimization Applied to EEG Source Localization of Somatosensory Evoked Potentials
IEEE Transactions on Neural Systems and Rehabilitation Engineering,;Vol. 22(2014)p. 11-20
Artikel i vetenskaplig tidskrift
A novel Bayesian approach to adaptive mean shift segmentation of brain images
Proceedings - IEEE Symposium on Computer-Based Medical Systems,;(2012)
Paper i proceeding
Investigation of brain tissue segmentation error and its effect on EEG source localization
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,;(2012)p. 1522-1525
Paper i proceeding
Unsupervised Segmentation of Head Tissues from Multi-modal MR Images for EEG Source Localization
Journal of Digital Imaging,;Vol. 28(2015)p. 499-514
Artikel i vetenskaplig tidskrift
Ämneskategorier
Medicinsk bildbehandling
ISBN
978-91-7597-339-5
R - Department of Signals and Systems, Chalmers University of Technology: 0346-718X
Room EA, floor 4, Hörsalsv ̈agen 11, Chalmers University of Technology
Opponent: Dr. Ali R. Khan, Robarts Research Institute, Western University, London, Ontario, Canada