Data-driven tiered procedure for enhancing yield in drug product manufacturing
Artikel i vetenskaplig tidskrift, 2016

Enhancing efficiency of pharmaceutical batch production processes is an important challenge in times of increasing public pressure on healthcare costs and decreasing research productivity. This study presents a data-based procedure for systematic yield enhancements in drug product manufacturing, based on four steps. On the first step, production is reviewed to select relevant loss causes, which are assessed on the second step deductively with the goal of assigning measurable parameters. Descriptive Statistical Modelling of loss causes is then performed on the third step, enabling model-based enhancements of processes on the fourth step or, if necessary, a loop-back review of a given loss cause. An industrial case study was performed on production data of 88 batches and demonstrated the applicability of the procedure by prioritizing relevant loss causes, reducing required sample quantities by up to 8% and a cosmetic defect by about 70% by a process change.

Multivariate data analysis

Decision-making

Biologics

Industrial case study

Sterile drug product manufacturing

Författare

L. Eberle

Eidgenössische Technische Hochschule Zürich (ETH)

F. Hoffmann-La Roche AG

H. Sugiyama

University of Tokyo

Stavros Papadokonstantakis

Chalmers, Energi och miljö, Industriella energisystem och -tekniker

A. Graser

F. Hoffmann-La Roche AG

R. Schmidt

F. Hoffmann-La Roche AG

K. Hungerbühler

Eidgenössische Technische Hochschule Zürich (ETH)

Computers and Chemical Engineering

0098-1354 (ISSN)

Vol. 87 82-94

Styrkeområden

Produktion

Livsvetenskaper och teknik

Ämneskategorier

Kemiteknik

DOI

10.1016/j.compchemeng.2015.12.012

Mer information

Senast uppdaterat

2018-03-19