Overview of the JET results
Artikel i vetenskaplig tidskrift, 2015

Since the installation of an ITER-like wall, the JET programme has focused on the consolidation of ITER design choices and the preparation for ITER operation, with a specific emphasis given to the bulk tungsten melt experiment, which has been crucial for the final decision on the material choice for the day-one tungsten divertor in ITER. Integrated scenarios have been progressed with the re-establishment of long-pulse, high-confinement H-modes by optimizing the magnetic configuration and the use of ICRH to avoid tungsten impurity accumulation. Stationary discharges with detached divertor conditions and small edge localized modes have been demonstrated by nitrogen seeding. The differences in confinement and pedestal behaviour before and after the ITER-like wall installation have been better characterized towards the development of high fusion yield scenarios in DT. Post-mortem analyses of the plasma-facing components have confirmed the previously reported low fuel retention obtained by gas balance and shown that the pattern of deposition within the divertor has changed significantly with respect to the JET carbon wall campaigns due to the absence of thermally activated chemical erosion of beryllium in contrast to carbon. Transport to remote areas is almost absent and two orders of magnitude less material is found in the divertor.

Författare

F. Romanelli

EFDA-JET

M. Abhangi

Institute for Plasma Research India

P. Abreu

Instituto Superior Tecnico

M. Aftanas

Czech Academy of Sciences

M. Afzal

Culham Lab

K.M. Aggarwal

Queen's University Belfast

L. Aho-Mantila

Teknologian Tutkimuskeskus (VTT)

E. Ahonen

Aalto-Yliopisto

M. Aints

Tartu Ülikool

M. Airila

Teknologian Tutkimuskeskus (VTT)

R. Albanese

Universita degli Studi di Napoli Federico II

D. Alegre

Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas

E. Alessi

Istituto Di Fisica Del Plasma Piero Caldirola, Milan

P B Aleynikov

ITER

A. Alfier

Consorzio Rfx

A. Alkseev

National Research Centre "Kurchatov Institute"

P. Allan

Culham Lab

S. Almaviva

Sapienza, Università di Roma

A. Alonso

Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas

B Alper

Culham Lab

I. Alsworth

Culham Lab

D. Alves

Instituto Superior Tecnico

G. Ambrosino

Universita degli Studi di Napoli Federico II

R. Ambrosino

Universita degli Studi di Napoli Parthenope

V. Amosov

Troitsk Institute for Innovation and Fusion Research

F. Andersson

Chalmers, Rymd- och geovetenskap

E. Andersson Sundén

Uppsala universitet

M. Angelone

ENEA Centro Ricerche Frascati

A. Anghel

National Institute for Laser, Plasma and Radiation Physics

M. Anghel

National Research and Development Institute for Cryogenics and Isotopic Technologies

C. Angioni

Max Planck-institutet

L. Appel

Culham Lab

G. Apruzzese

ENEA Centro Ricerche Frascati

P. Arena

Universita degli Studi di Catania

M. Ariola

Universita degli Studi di Napoli Parthenope

H. Arnichand

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

G. Arnoux

Culham Lab

S. Arshad

Fusion for Energy Joint Undertaking

A. Ash

Culham Lab

E. Asp

Uppsala universitet

O. Asunta

Aalto-Yliopisto

C.V. Atanasiu

National Institute for Laser, Plasma and Radiation Physics

Y. Austin

Culham Lab

L. Avotina

Latvijas Universitate

M.D. Axton

Culham Lab

C. Ayres

Culham Lab

C. Bachmann

EUROfusion Programme Management Unit

A. Baciero

Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas

D. Baião

Instituto Superior Tecnico

V. Bailescu

Nuclear Fuel Plant

B. Baiocchi

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

A. Baker

Culham Lab

R.A. Baker

Culham Lab

I. Balboa

Culham Lab

M. Balden

Max Planck-institutet

N. Balshaw

Culham Lab

R. Bament

Culham Lab

J.W. Banks

Culham Lab

Y.F. Baranov

Culham Lab

I.L. Barlow

Culham Lab

M.A. Barnard

Culham Lab

D. Barnes

Culham Lab

R. Barnsley

ITER

A. Baron Wiechec

Culham Lab

M. Baruzzo

Consorzio Rfx

V. Basiuk

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

M. Bassan

ITER

R. Bastow

Culham Lab

A. Batista

Instituto Superior Tecnico

P. Batistoni

ENEA Centro Ricerche Frascati

R. Bauer

EUROfusion Programme Management Unit

B. Bauvir

ITER

B. Bazylev

Karlsruher Institut für Technologie (KIT)

J. Beal

University of York

P.S. Beaumont

Culham Lab

A. Becoulet

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

P. Bednarczyk

Institute of Plasma Physics and Laser Microfision, Warszaw

N. Bekris

Culham Lab

M. Beldishevski

Culham Lab

K. Bell

Culham Lab

F. Belli

ENEA Centro Ricerche Frascati

M. Bellinger

Culham Lab

J.K. Belo

Culham Lab

P. Belo

Instituto Superior Tecnico

Culham Lab

Belonohy

Max Planck-institutet

N.A. Benterman

Culham Lab

H. Bergsåker

Kungliga Tekniska Högskolan (KTH)

J. Bernardo

Instituto Superior Tecnico

M. Bernert

Max Planck-institutet

M. Berry

Culham Lab

L. Bertalot

ITER

M.N.A. Beurskens

Culham Lab

B. Bieg

Institute of Plasma Physics and Laser Microfision, Warszaw

Johan Bielecki

Institute of Plasma Physics and Laser Microfision, Warszaw

T. Biewer

Oak Ridge National Laboratory

M. Bigi

Consorzio Rfx

P. Bílková

Czech Academy of Sciences

F. Binda

Uppsala universitet

J.P.S. Bizarro

Instituto Superior Tecnico

Nuclear Fusion

0029-5515 (ISSN)

Vol. 55

Ämneskategorier

Astronomi, astrofysik och kosmologi

DOI

10.1088/0029-5515/55/10/104001