Dynamic higher order equations
Doktorsavhandling, 2016

The subject of this thesis is to derive and evaluate governing equations and corresponding boundary conditions for solid cylinders and rectangular plates, where the material constituting the cylinder or plate are governed by classical elasticity, micropolar elasticity or a functionally graded case of the previously mentioned models. This is achieved by a systematic power series expansion approach, by either adopting a generalized Hamilton's principle or a direct approach. For the solid cylinders a power series expansion in the radial coordinate for the sought fields are adopted. Equations of motion together with consistent sets of end boundary conditions are derived in a systematic fashion up to arbitrary order using a generalized Hamilton's principle. Governing equations are obtained for longitudinal, torsional, and exural modes. In the case of the rectangular plate, a power series expansion of the sought fields are adopted in the thickness coordinate. Governing equations of motion, for extensional and exural case, together with consistent sets of edge boundary conditions are derived in a systematic fashion up to arbitrary order with use of the direct approach. Both the governing equations for the solid cylinder and the rectangular plate are asymptotically correct to all studied orders. Numerical examples are presented for different sorts of problems, using exact theory, the present series expansion theories of different order, various classical theories and other newly developed approximate theories. These results cover dispersion curves, eigenfrequencies, various curves of cross sectional quantities such as displacements, stresses and micro-rotations, as well as fixed frequency motion due to prescribed end displacement or lateral distributed forces. The results illustrate that the present approach may render benchmark solutions provided higher order truncations are used, and act as engineering equations when using low order truncations.

Torsion

Series expansion

Elasticity

Micropolar

Functionally graded material

EA, Hörsalsvägen 11, Chalmers Tekniska Högskola
Opponent: Prof. Antonio Ferreira, Faculty of Engineering, University of Porto, Portugal

Författare

Hossein Abadikhah

Dynamik

A hierarchy of dynamic equations for micropolar plates

Journal of Sound and Vibration,;Vol. 357(2015)p. 427-436

Artikel i vetenskaplig tidskrift

A hierarchy of dynamic equations for solid isotropic circular cylinders

Wave Motion,;Vol. 51(2014)p. 206-221

Artikel i vetenskaplig tidskrift

Ämneskategorier

Maskinteknik

Teknisk mekanik

Fundament

Grundläggande vetenskaper

Styrkeområden

Materialvetenskap

ISBN

978-91-7597-409-5

EA, Hörsalsvägen 11, Chalmers Tekniska Högskola

Opponent: Prof. Antonio Ferreira, Faculty of Engineering, University of Porto, Portugal

Mer information

Skapat

2017-10-07