Weighted theta functions and embeddings with applications to Max-Cut, clustering and summarization
Konferensbidrag (offentliggjort, men ej förlagsutgivet), 2015

We introduce a unifying generalization of the Lovász theta function, and the associated geometric embedding, for graphs with weights on both nodes and edges. We show how it can be computed exactly by semidefinite programming, and how to approximate it using SVM computations. We show how the theta function can be interpreted as a measure of diversity in graphs and use this idea, and the graph embedding in algorithms for Max-Cut, correlation clustering and document summarization, all of which are well represented as problems on weighted graphs.

Semi-definite programming

Embeddings

Weighted graph

Correlation clustering

Graph embeddings

Geometric embedding

Information science

Document summarization

Theta-function

Författare

Fredrik Johansson

Chalmers, Data- och informationsteknik, Datavetenskap

A. Chattoraj

University of Rochester

Chalmers

C. Bhattacharyya

Indian Institute of Science, Bangalore

Devdatt Dubhashi

Chalmers, Data- och informationsteknik, Datavetenskap

29th Annual Conference on Neural Information Processing Systems, NIPS 2015, Montreal, Canada, 7-12 December

1049-5258 (ISSN)

Vol. 2015-January 1018-1026

Ämneskategorier

Diskret matematik

Mer information

Senast uppdaterat

2018-09-10