Dynamics of microresonator frequency comb generation: models and stability
Artikel i vetenskaplig tidskrift, 2016
Microresonator frequency combs hold promise for enabling a new class of light sources that are simultaneously both broadband and coherent, and that could allow for a profusion of potential applications. In this article, we review various theoretical models for describing the temporal dynamics and formation of optical frequency combs. These models form the basis for performing numerical simulations that can be used in order to better understand the comb generation process, for example helping to identify the universal combcharacteristics and their different associated physical phenomena. Moreover, models allow for the study, design and optimization of comb properties prior to the fabrication of actual devices. We consider and derive theoretical formalisms based on the Ikeda map, the modal expansion approach, and the Lugiato-Lefever equation. We further discuss the generation of frequency combs in silicon resonators featuring multiphoton absorption and free-carrier effects. Additionally, we review comb stability properties and consider the role of modulational instability as well as of parametric instabilities due to the boundary conditions of the cavity. These instability mechanisms are the basis for comprehending the process of frequency comb formation, for identifying the different dynamical regimes and the associated dependence on the comb parameters. Finally, we also discuss the phenomena of continuous wave bi- and multistability and its relation to the observation of mode-locked cavity solitons.
1983
ring cavity
p75
fiber
Optics
whispering-gallery modes
Materials Science
frequency comb
physical review letters
laughlin dw
group-velocity
dispersion
Physics
modeling
v54
laughlin dw
v51
silicon wave-guides
physical review letters
temporal cavity solitons
transmitted light
microresonator
modulational instability
chip
Science & Technology - Other Topics
Nonlinear optics
microring resonators
p681
1985