Load and risk based maintenance management of wind turbines
Doktorsavhandling, 2016
condition monitoring system (CMS)
optimization
supervisory control and data acquisition (SCADA)
maintenance planning
Artificial neural network (ANN)
life cycle cost
maintenance management
maintenance strategy
wind energy.
Författare
Pramod Bangalore
Svensk Vindkraftstekniskt Centrum (SWPTC)
Chalmers, Energi och miljö
Chalmers, Energi och miljö, Elkraftteknik
Cost Efficient Maintenance Strategies for Wind Power Systems Using LCC
2014 International Conference on Probabilistic Methods Applied to Power Systems, PMAPS 2014; Durham; United Kingdom; 7 July 2014 through 10 July 2014,;(2014)p. Art. no. 6960591-
Paper i proceeding
An Artificial Neural Network Approach for Early Fault Detection of Gearbox Bearings
IEEE Transactions on Smart Grid,;Vol. 6(2015)p. 980-987
Artikel i vetenskaplig tidskrift
Analysis of SCADA data for early fault detection with application to the maintenance management of wind turbines
Cigre Session 46,;(2016)
Paper i proceeding
Self Evolving Neural Network Based Algorithm for Fault Prognosis in Wind Turbines : A Case Study
2014 International Conference on Probabilistic Methods Applied to Power Systems (Pmaps),;(2014)
Paper i proceeding
An Approach for Self Evolving Neural Network Based Algorithm for Fault Prognosis in Wind Turbine
IEEE Grenoble Conference PowerTech, POWERTECH 2013; Grenoble; France,;(2013)p. (article no 6652218)-
Paper i proceeding
Styrkeområden
Energi
Ämneskategorier
Annan elektroteknik och elektronik
ISBN
978-91-7597-451-4
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4132
EB, Hörsalsvägen 11, 41296 Gothenburg.
Opponent: Prof. Miguel A. Sanz Bobi, Intelligent Systems Research Group, Comillas Pontifical University, Madrid, Spain