Pt Nanoparticle Sintering and Redispersion on a Heterogeneous Nanostructured Support
Artikel i vetenskaplig tidskrift, 2016

Understanding how nanostructure and atomic-scale defects of the support affect metal catalyst nanoparticle sintering is of crucial importance to minimize thermal deactivation, as well as to understand the origin of widely observed but still unexplained phenomena, such as transient multimodal particle size distributions and nanoparticle redispersion. To shed light on these issues, we present a generic experimental approach that relies on nanofabrication to introduce controlled structural heterogeneity in a chemically homogeneous model catalyst support. This is achieved by fabricating arrays of nanocone structures separated by flat areas, where both are homogeneously sputter-coated with a thin amorphous alumina layer. Using ex situ aberration-corrected scanning transmission electron microscopy (STEM) to analyze Pt model catalyst nanoparticles on such nanostructured supports prior and after exposure to 4% O-2 in Ar carrier gas at 600 degrees C, we find that the initial particle size distributions and their time evolution during sintering to be different on the cones and the flat areas. On the cones, redispersion of Pt into highly abundant particles of about 1 nm occurs very rapidly. In contrast, particle shrinkage and growth combined with redispersion occur on the flat areas, leading to a broader and bimodal size distribution. These processes are amplified and efficiently demonstrated by the nanostructured surface because of (i) higher support defect density on the nanocones compared to the flat surfaces in between and (ii) initially different Pt particle size distributions on the cones and on the flat surfaces. Hence, the nanostructured surface facilitates the dear identification of catalyst redispersion in oxidizing conditions and experimentally identifies a mechanism that gives rise to (transient) bi- or multimodal particle size distributions during sintering.

Författare

Pooya Tabib Zadeh Adibi

Chalmers, Fysik, Kemisk fysik

Kompetenscentrum katalys (KCK)

Torben Nilsson Pingel

Kompetenscentrum katalys (KCK)

Chalmers, Fysik, Eva Olsson Group

Eva Olsson

Chalmers, Fysik, Eva Olsson Group

Kompetenscentrum katalys (KCK)

Henrik Grönbeck

Kompetenscentrum katalys (KCK)

Chalmers, Fysik, Kemisk fysik

Christoph Langhammer

Chalmers, Fysik, Kemisk fysik

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 120 14918-14925

Ämneskategorier

Annan kemi

Kemi

DOI

10.1021/acs.jpcc.6b03874