Demonstration of a micromachined planar distribution network in gap waveguide technology for a linear slot array antenna at 100 GHz
Artikel i vetenskaplig tidskrift, 2016

The need for high frequency antennas is rapidly increasing with the development of new wireless rate communication technology. Planar antennas have an attractive form factor, but they require a distribution network. Microstrip technology is most commonly used at low frequency but suffers from large dielectric and ohmic losses at higher frequencies and particularly above 100 GHz. Substrate-integrated waveguides also suffer from dielectric losses. In addition, standard rectangular waveguide interfaces are inconvenient due to the four flange screws that must be tightly fastened to the antenna to avoid leakage. The current paper presents a planar slot array antenna that does not suffer from any of these problems. The distribution network is realized by micromachining using low-loss gap waveguide technology, and it can be connected to a standard rectangular waveguide flange without using any screws or additional packaging. To realize the antenna at these frequencies, it was fabricated with micromachining, which offers the required high precision, and a low-cost fabrication method. The antenna was micromachined with DRIE in two parts, one silicon-on-insulator plate and one Si plate, which were both covered with Au to achieve conductivity. The input reflection coefficient was measured to be below 10 dB over a 15.5% bandwidth, and the antenna gain was measured to be 10.4 dBi, both of which are in agreement with simulations.







gap waveguide


Sofia Rahiminejad

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Ashraf Uz Zaman

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Sjoerd Haasl

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Per-Simon Kildal

Chalmers, Signaler och system, Kommunikation, Antenner och Optiska Nätverk

Peter Enoksson

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Journal of Micromechanics and Microengineering

0960-1317 (ISSN) 13616439 (eISSN)

Vol. 26 7 Art. no. 074001- 074001


Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik



Elektroteknik och elektronik





Mer information

Senast uppdaterat