A multiscale method for linear elasticity reducing Poisson locking
Artikel i vetenskaplig tidskrift, 2016

We propose a generalized finite element method for linear elasticity equations with highly varying and oscillating coefficients. The method is formulated in the framework of localized orthogonal decomposition techniques introduced by Malqvist and Peterseim (2014). Assuming only L-infinity-coefficients we prove linear convergence in the H-1-norm, also for materials with large Lame parameter A. The theoretical a priori error estimate is confirmed by numerical examples.

Poisson locking

Multiscale

Generalized finite element

LOD

Linear elasticity

Författare

P. Henning

Kungliga Tekniska Högskolan (KTH)

Anna Persson

Chalmers, Matematiska vetenskaper, Matematik

Göteborgs universitet

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 310 156-171

Ämneskategorier

Beräkningsmatematik

Matematisk analys

DOI

10.1016/j.cma.2016.06.034