Community structure of partial nitritation-anammox biofilms at decreasing substrate concentrations and low temperature
Artikel i vetenskaplig tidskrift, 2017

Partial nitritation-anammox (PNA) permits energy effective nitrogen removal. Today PNA is used for treatment of concentrated and warm side streams at wastewater treatment plants, but not the more diluted and colder main stream. To implement PNA in the main stream, better knowledge about microbial communities at the typical environmental conditions is necessary. In order to investigate the response of PNA microbial communities to decreasing substrate availability, we have operated a moving bed biofilm reactor (MBBR) at decreasing reactor concentrations (311–27 mg-N l−1 of ammonium) and low temperature (13°C) for 302 days and investigated the biofilm community using high throughput amplicon sequencing; quantitative PCR; and fluorescence in situ hybridization. The anammox bacteria (Ca. Brocadia) constituted a large fraction of the biomass with fewer aerobic ammonia oxidizing bacteria (AOB) and even less nitrite oxidizing bacteria (NOB; Nitrotoga, Nitrospira and Nitrobacter). Still, NOB had considerable impact on the process performance. The anammox bacteria, AOB and NOB all harboured more than one population, indicating some diversity, and the heterotrophic bacterial community was diverse (seven phyla). Despite the downshifts in substrate availability, changes in the relative abundance and composition of anammox bacteria, AOB and NOB were small and also the heterotrophic community showed little changes in composition. This indicates stability of PNA MBBR communities towards decreasing substrate availability and suggests that even heterotrophic bacteria are integral components of these communities.

community structure



main stream

partial nitritation


Frank Persson

Chalmers, Bygg- och miljöteknik, Vatten Miljö Teknik

Carolina Suarez

Göteborgs universitet

Malte Hermansson

Göteborgs universitet

Elzbieta Plaza

Kungliga Tekniska Högskolan (KTH)

Razia Sultana

Kungliga Tekniska Högskolan (KTH)

Britt-Marie Wilen

Chalmers, Bygg- och miljöteknik, Vatten Miljö Teknik

Microbial Biotechnology

1751-7907 (ISSN) 17517915 (eISSN)

Vol. 10 4 SI 761-772


Building Futures (2010-2018)







Mer information

Senast uppdaterat