The probability density function tail of the Kardar–Parisi–Zhang equation in the strongly nonlinear regime
Artikel i vetenskaplig tidskrift, 2016

An analytical derivation of the probability density function (PDF) tail describing the strongly correlated interface growth governed by the nonlinear Kardar–Parisi–Zhang equation is provided. The PDF tail exactly coincides with a Tracy–Widom distribution i.e. a PDF tail proportional to exp(-cw_2^(3/2)), where w_2 is the the width of the interface. The PDF tail is computed by the instanton method in the strongly non-linear regime within the Martin–Siggia– Rose framework using a careful treatment of the non-linear interactions. In addition, the effect of spatial dimensions on the PDF tail scaling is discussed. This gives a novel approach to understand the rightmost PDF tail of the interface width distribution and the analysis suggests that there is no upper critical dimension.

MSR

KPZ

interface growth

Instantons

Författare

Johan Anderson

Chalmers, Rymd- och geovetenskap, Plasmafysik och fusionsenergi

Jonas Johansson

Lunds universitet

Journal of Physics A: Mathematical and Theoretical

1751-8113 (ISSN) 1751-8121 (eISSN)

Vol. 49 50 505001- 505001

Styrkeområden

Nanovetenskap och nanoteknik

Materialvetenskap

Ämneskategorier (SSIF 2011)

Fysik

Annan fysik

Fundament

Grundläggande vetenskaper

DOI

10.1088/1751-8113/49/50/505001

Mer information

Senast uppdaterat

2018-03-02