Strain dependent light-off temperature in catalysis revealed by planar laser-induced fluorescence
Artikel i vetenskaplig tidskrift, 2017

Understanding how specific atom sites on metal surfaces lower the energy barrier for chemical reactions is vital in catalysis. Studies on simplified model systems have shown that atoms arranged as steps on the surface play an important role in catalytic reactions, but a direct comparison of how the light-off temperature is affected by the atom orientation on the step has not yet been possible due to methodological constraints. Here we report in situ spatially resolved measurements of the CO2 production over a cylindrical-shaped Pd catalyst and show that the light-off temperature at different parts of the crystal depends on the step orientation of the two types of steps (named A and B). Our finding is supported by density functional theory calculations, revealing that the steps, in contrast to what has been previously reported in the literature, are not directly involved in the reaction onset but have the role of releasing stress.

steps

cylindrical crystal

CO oxidation

planar laser-induced fluorescence

density functional theory

Författare

Sara Blomberg

Unknown organization

Johan Zetterberg

Unknown organization

Jianfeng Zhou

Unknown organization

Lindsay R. Merte

Unknown organization

Johan Gustafson

Unknown organization

Mikhail Shipilin

Lunds universitet

Adriana Trinchero

Kompetenscentrum katalys (KCK)

Chalmers, Fysik, Kemisk fysik

Luis Miccio

Unknown organization

Ana Magana

Unknown organization

Maxim Ilyn

Unknown organization

Frederik Schiller

Unknown organization

Enrique Ortega

Unknown organization

Florian Bertram

Unknown organization

Henrik Grönbeck

Chalmers, Fysik, Kemisk fysik

Kompetenscentrum katalys (KCK)

Edvin Lundgren

Unknown organization

ACS Catalysis

2155-5435 (eISSN)

Vol. 7 110-

Ämneskategorier

Fysik