An Adaptive Finite Element Method in Quantitative Reconstruction of Small Inclusions from Limited Observations
Preprint, 2016

We consider a coefficient inverse problem for the dielectric permittivity in Maxwell's equations, with data consisting of boundary measurements of one or two backscattered or transmitted waves. The problem is treated using a Lagrangian approach to the minimization of a Tikhonov functional, where an adaptive finite element method forms the basis of the computations. A new a posteriori error estimate for the coefficient is derived. The method is tested successfully in numerical experiments for the reconstruction of two, three, and four small inclusions with low contrast, as well as the reconstruction of a superposition of two Gaussian functions.

Författare

John Bondestam Malmberg

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Matematik

Larisa Beilina

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Ämneskategorier

Matematik