Suppressing relaxation in superconducting qubits by quasiparticle pumping
Artikel i vetenskaplig tidskrift, 2016

Copyright 2016 by the American Association for the Advancement of Science; all rights reserved.Dynamical error suppression techniques are commonly used to improve coherence in quantum systems.They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation.We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70%reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability.

Författare

S. Gustavsson

Massachusetts Institute of Technology (MIT)

F. Yan

Massachusetts Institute of Technology (MIT)

G. Catelani

Forschungszentrum Jülich

Jonas Bylander

Chalmers, Mikroteknologi och nanovetenskap (MC2), Kvantkomponentfysik

A. Kamal

Massachusetts Institute of Technology (MIT)

J. Birenbaum

Massachusetts Institute of Technology (MIT)

D. Hover

Massachusetts Institute of Technology (MIT)

D. Rosenberg

Massachusetts Institute of Technology (MIT)

G. Samach

Massachusetts Institute of Technology (MIT)

A.P. Sears

Massachusetts Institute of Technology (MIT)

S.J. Weber

Massachusetts Institute of Technology (MIT)

J.L. Yoder

Massachusetts Institute of Technology (MIT)

John Clarke

University of California

A.J. Kerman

Massachusetts Institute of Technology (MIT)

F. Yoshihara

RIKEN (The Institute of Physical and Chemical Research)

Y. Nakamura

Riken

University of Tokyo

T.P. Orlando

Massachusetts Institute of Technology (MIT)

W.D. Oliver

Massachusetts Institute of Technology (MIT)

Science

0036-8075 (ISSN)

Vol. 354 1573-1577

Ämneskategorier

Nanoteknik

Den kondenserade materiens fysik

DOI

10.1126/science.aah5844