Gate-Voltage Response of a One-Dimensional Ballistic Spin Valve without Spin-Orbit Interaction
Artikel i vetenskaplig tidskrift, 2017

We show that the engineering of tunnel barriers forming at the interfaces of a one-dimensional spin valve provides a viable path to a strong gate-voltage tunability of the magnetoresistance effect. Specifically, we investigate theoretically a carbon nanotube (CNT) spin valve in terms of the influence of the CNT-contact interface on the performance of the device. The focus is on the strength and the spin selectivity of the tunnel barriers that are modeled as Dirac-δ potentials. The scattering matrix approach is used to derive the transmission coefficient that yields the tunneling magnetoresistance (TMR). We find a strong nontrivial gate-voltage response of the TMR in the absence of spin-orbit coupling when the energy of the incident electrons matches the potential energy of the barrier. Analytic expressions for the TMR in various limiting cases are derived. These expressions are used to explain previous experimental results, and also to predict prospective ways for device optimization with respect to the size and tunability of the TMR effect in the ballistic transport regime by means of engineering the tunnel barriers at the CNT-contact interfaces.

spin filtering

nanotubes

magnetoresistance

spin valves

spintronics

carbon-based materials

ballistic transport

Författare

Maciej Misiorny

Chalmers, Mikroteknologi och nanovetenskap, Tillämpad kvantfysik

Carola Meyer

Forschungszentrum Jülich

Universität Osnabrück

Physical Review Applied

2331-7019 (eISSN)

Vol. 7 2 024011- 024011

Styrkeområden

Nanovetenskap och nanoteknik (SO 2010-2017, EI 2018-)

Ämneskategorier

Den kondenserade materiens fysik

DOI

10.1103/PhysRevApplied.7.024011

Mer information

Senast uppdaterat

2018-03-06