Temperature-induced phase transition from cycloidal to collinear antiferromagnetism in multiferroic Bi0.9Sm0.1FeO3 driven by f-d induced magnetic anisotropy
Artikel i vetenskaplig tidskrift, 2017

In multiferroic BiFeO3 a cycloidal antiferromagnetic structure is coupled to a large electric polarization at room temperature, giving rise to magnetoelectric functionality that may be exploited in novel multiferroic-based devices. In this paper, we demonstrate that substituting samarium for 10% of the bismuth ions increases the periodicity of the room-temperature cycloid, and upon cooling to below similar to 15 K the magnetic structure tends towards a simple G-type antiferromagnet, which is fully established at 1.5 K. We show that this transition results from f-d exchange coupling, which induces a local anisotropy on the iron magnetic moments that destroys the cycloidal order-a result of general significance regarding the stability of noncollinear magnetic structures in the presence of multiple magnetic sublattices.

heat

crystal

weak ferromagnetism

neutron-diffraction

Physics

substituted bifeo3 ceramics

Författare

R. D. Johnson

University of Oxford

STFC Rutherford Appleton Laboratory

P. A. McClarty

STFC Rutherford Appleton Laboratory

D. D. Khalyavin

STFC Rutherford Appleton Laboratory

P. Manuel

STFC Rutherford Appleton Laboratory

P. Svedlindh

Uppsala universitet

Christopher Knee

Chalmers, Kemi och kemiteknik, Energi och material, Oorganisk miljökemi

Physical Review B

24699950 (ISSN) 24699969 (eISSN)

Vol. 95 5 054420

Förstärkta multiferroiska egenskaper i sam-dopad BiFeO3 framställd via pulversyntes och tunnfilmsdeposition

Vetenskapsrådet (VR), 2012-01-01 -- 2014-12-31.

Ämneskategorier

Oorganisk kemi

Annan fysik

Den kondenserade materiens fysik

DOI

10.1103/PhysRevB.95.054420

Mer information

Senast uppdaterat

2021-05-20