A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes
Artikel i vetenskaplig tidskrift, 2015

Nitrogen-doped carbon nanotubes (NCNTs) were synthesized by chemical vapor deposition using cobalt-based oxides as catalyst and ethylenediamine (EDA) as carbon/nitrogen precursor. The influence of growth time, EDA concentration and growth temperature on the morphology, yield, composition, graphitization and oxidation resistance of the NCNTs was systematically investigated by using Raman spectroscopy, temperature-programmed oxidation and other techniques. The NCNT growth from ethylenediamine with a high N/C ratio involves several processes including mainly (1) catalytic growth of NCNTs, (2) homogeneous gas-phase decomposition of EDA, (3) non-catalytic deposition of pyrolytic carbon/nitrogen species and (4) surface etching of amorphous carbon or carbon at defect sites through gasification. At a later growth stage the etching process appears to be dominating, leading to the thinning of nanotubes and the decrease of yield. Moreover, the surface etching through carbon gasification strongly influences the structure and degree of graphitization of NCNTs.

Carbon nanotubes

Ethlyenediamine

Nitrogen-doping

Catalytic chemical vapor deposition

Carbon gasification

Författare

Kunpeng Xie

Kemi och kemiteknik, Kemiteknik, Kemisk reaktionsteknik

Kompetenscentrum katalys (KCK)

F. Yang

P. Ebbinghaus

A. Erbe

M. Muhler

W. Xia

Journal of Energy Chemistry

2095-4956 (ISSN)

Vol. 24 407-415

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier

Fysikalisk kemi

Kemiska processer

Nanoteknik

DOI

10.1016/j.jechem.2015.06.016