Multiscale methods for problems with complex geometry
Artikel i vetenskaplig tidskrift, 2017

We propose a multiscale method for elliptic problems on complex domains, e.g. domains with cracks or complicated boundary. For local singularities this paper also offers a discrete alternative to enrichment techniques such as XFEM. We construct corrected coarse test and trail spaces which takes the fine scale features of the computational domain into account. The corrections only need to be computed in regions surrounding fine scale geometric features. We achieve linear convergence rate in the energy norm for the multiscale solution. Moreover, the conditioning of the resulting matrices is not affected by the way the domain boundary cuts the coarse elements in the background mesh. The analytical findings are verified in a series of numerical experiments.

priori error bound

multiscale method

complex geometry

Författare

Daniel Elfverson

Umeå universitet

Mats G Larson

Umeå universitet

Axel Målqvist

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Chalmers, Matematiska vetenskaper

Göteborgs universitet

Computer Methods in Applied Mechanics and Engineering

0045-7825 (ISSN)

Vol. 321 103-123

Ämneskategorier (SSIF 2011)

Matematik

Geometri

Styrkeområden

Building Futures (2010-2018)

Fundament

Grundläggande vetenskaper

DOI

10.1016/j.cma.2017.03.023

Mer information

Senast uppdaterat

2018-02-27