The finite element method for the time-dependent gross-pitaevskii equation with angular momentum rotation
Artikel i vetenskaplig tidskrift, 2017

We consider the time-dependent Gross-Pitaevskii equation describing the dynamics of rotating Bose-Einstein condensates and its discretization with the finite element method. We analyze a mass conserving Crank-Nicolson-type discretization and prove corresponding a priori error estimates with respect to the maximum norm in time and the L2- and energy-norm in space. The estimates show that we obtain optimal convergence rates under the assumption of additional regularity for the solution to the Gross-Pitaevskii equation. We demonstrate the performance of the method in numerical experiments. © by SIAM 2017.

Gross-Pitaevskii equation

Bose-Einstein condensate

Finite element method

Författare

P. Henning

Kungliga Tekniska Högskolan (KTH)

Axel Målqvist

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

SIAM Journal on Numerical Analysis

0036-1429 (ISSN) 1095-7170 (eISSN)

Vol. 55 2 923-952

Ämneskategorier

Matematik

Fundament

Grundläggande vetenskaper

DOI

10.1137/15M1009172

Mer information

Senast uppdaterat

2018-02-26