Dielectric properties of Mn doped Bismuth Barium Titanate based ceramic thin films prepared by PLD technique
Artikel i vetenskaplig tidskrift, 2017

In this article, the effect of Mn doping on the permittivity and dielectric loss in 0.67BiFeO(3)-0.33BaTiO(3) (BF-BT) based film bulk acoustic resonator test structures has been investigated. BF-BT thin films were deposited on the fused silica substrates with Pt/TiO2/Ti as bottom electrode. During the study of the BF-BT based parallel-plate structures, it has been revealed that BF-BT is in the ferroelectric state at room temperature. Higher permittivity (epsilon) is observed at a growth temperature of 600 degrees C and lower dielectric loss is achieved at 0.3 wt% Mn doping contents. These results show that the proposed BF-BT based FBAR test structure has a great potential for applications in tunable thin Film Bulk Acoustic Resonator (FBAR) devices. Comparison of the measured and simulation results has been made by utilizing the Mason equivalent circuit.

PLD technique

Dielectric properties

Tunable FBAR

Mn doped BF-BT thin films

Bismuth Barium Titanate


Shoaib Alam Mallick

Qatar University

Chalmers University of Technology

Andrei Vorobiev

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Z. Ahmad

Qatar University

F. Touati

Qatar University

Spartak Gevorgian

Chalmers, Mikroteknologi och nanovetenskap (MC2), Terahertz- och millimetervågsteknik

Ceramics International

0272-8842 (ISSN)

Vol. 43 8778-8783


Informations- och kommunikationsteknik

Nanovetenskap och nanoteknik








Den kondenserade materiens fysik