The role of group III, IV elements in Nb(4)AC(3) MAX phases (A = Al, Si, Ga, Ge) and the unusual anisotropic behavior of the electronic and optical properties
Artikel i vetenskaplig tidskrift, 2017

Niobium based Nb4AlC3, Nb4SiC3, Nb4GeC3 and Nb4GaC3 were investigated by means of density functional theory. Together with the known Nb4AlC3, the role of group III, IV elements in various properties of Nb(4)AC(3) (A = Al, Si, Ga, Ge) was systematically investigated, and particularly the bulk moduli, shear moduli, and Young's moduli helped us to approach the ductility. All the studied compounds were found to be mechanically stable, and they also exhibit the metallic nature that results from the Nb-4d states being dominant at the Fermi level. The typical 4d-2p hybridization leads to strong Nb-C covalent bonding and a relatively weaker 4d-3p (4p) hybridization between Nb and A is identified. The latter does perturb the performance of materials. By varying A elements in Nb(4)AC(3), the position and the width of the p states as well as hybridizations are altered, which determine the covalency and the ionicity of the chemical bonds. A high density of states at the Fermi level and the nesting effects in the Fermi surface are identified in Nb4SiC3 and linked to its unusual anisotropic behavior. Furthermore, Nb4GeC3 is predicted to be a very promising candidate solar heating barrier material. Overall, the present work gives insights into the role of A elements in the electronic structure and the physical properties of Nb(4)AC(3) compounds. The tendencies and rules established here will help in the designing of functional ceramic materials with desirable properties.

Mechanical-Properties

Carbides

PHASES

1st-Principles

NB2ALC

M(N+1)AX(N)

TI3SIC2

TI

Fabrication

Thin-Films

Ab-Initio Calculations

Författare

Y. D. Fu

Harbin Engineering University

Baochang Wang

Chalmers, Fysik, Kemisk fysik

Y. Teng

Harbin Engineering University

X. S. Zhu

Harbin Engineering University

X. X. Feng

Harbin Engineering University

M. F. Yan

Harbin Institute of Technology

P. Korzhavyi

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences

The Royal Institute of Technology (KTH)

W. W. Sun

Vanderbilt University

Oak Ridge National Laboratory

The Royal Institute of Technology (KTH)

Physical Chemistry Chemical Physics

1463-9076 (ISSN) 1463-9084 (eISSN)

Vol. 19 15471-15483

Ämneskategorier

Fysikalisk kemi

Atom- och molekylfysik och optik

DOI

10.1039/c7cp01375b