Fabrication of Supramolecular n/p-Nanowires via Coassembly of Oppositely Charged Peptide-Chromophore Systems in Aqueous Media
Artikel i vetenskaplig tidskrift, 2017

Fabrication of supramolecular electroactive materials at the nanoscale with well-defined size, shape, composition, and organization in aqueous medium is a current challenge. Herein we report construction of supramolecular charge-transfer complex one-dimensional (1D) nanowires consisting of highly ordered mixed-stack pi-electron donor-acceptor (D-A) domains. We synthesized n-type and p-type beta-sheet forming short peptide-chromophore conjugates, which assemble separately into well-ordered nanofibers in aqueous media. These complementary p-type and n-type nanofibers coassemble via hydrogen bonding, charge-transfer complex, and electrostatic interactions to generate highly uniform supramolecular n/p-coassembled 1D nanowires. This molecular design ensures highly ordered arrangement of D-A stacks within n/p-coassembled supramolecular nanowires. The supramolecular n/p-coassembled nanowires were found to be formed by A D-A unit cells having an association constant (K-A) of 5.18 x 10(5) M-1. In addition, electrical measurements revealed that supramolecular n/p-coassembled nanowires are approximately 2400 and 10 times more conductive than individual n-type and p-type nanofibers, respectively. This facile strategy allows fabrication of well-defined supramolecular electroactive nanomaterials in aqueous media, which can find a variety of applications in optoelectronics, photovoltaics, organic chromophore arrays, and bioelectronics.

coassembly

self-assembly

peptide chromophore

conductivity

nanowires

supramolecular

Författare

M. A. Khalily

Bilkent Universitesi

G. Bakan

Atilim Universitesi

Bilkent Universitesi

Betül Kücüköz

Chalmers, Kemi och kemiteknik, Kemi och biokemi

A. E. Topal

Bilkent Universitesi

A. Karatay

Ankara Universitesi

H. G. Yaglioglu

Ankara Universitesi

A. Dana

Bilkent Universitesi

M. O. Guler

University of Chicago

Bilkent Universitesi

ACS Nano

1936-0851 (ISSN) 1936-086X (eISSN)

Vol. 11 7 6881-6892

Ämneskategorier

Fysikalisk kemi

Nanoteknik

Den kondenserade materiens fysik

DOI

10.1021/acsnano.7b02025

Mer information

Senast uppdaterat

2022-04-06