Self-intersection of foliation cycles on complex manifolds
Artikel i vetenskaplig tidskrift, 2017

Let X be a compact Kahler manifold and let T be a foliation cycle directed by a transversely Lipschitz lamination on X. We prove that the self-intersection of the cohomology class of T vanishes as long as T does not contain currents of integration along compact manifolds. As a consequence, we prove that transversely Lipschitz laminations of low codimension in certain manifolds, e.g. projective spaces, do not carry any foliation cycles except those given by integration along compact leaves.

Sweden.

Lucas] Chalmers

Lucas] Univ Gothenburg

Dept Math Sci

lamination

SE-41296 Gothenburg

transverse measure

Foliation cycle

Mathematics

UMR CNRS 7586

[Kaufmann

Sweden.

holomorphic foliation

G

SE-41296 Gothenburg

currents

[Kaufmann

F-75005 Paris

laminations

France.

Författare

Lucas Kaufmann Sacchetto

Chalmers, Matematiska vetenskaper, Algebra och geometri

Göteborgs universitet

International Journal of Mathematics

0129-167X (ISSN)

Vol. 28 Art no 1750054- 1750054

Ämneskategorier

Matematik

DOI

10.1142/s0129167x17500549