Membrane Tubulation in Lipid Vesicles Triggered by the Local Application of Calcium Ions
Artikel i vetenskaplig tidskrift, 2017

Experimental and theoretical studies on ion-lipid interactions predict that binding of calcium ions to cell membranes leads to macroscopic mechanical effects and membrane remodeling. Herein, we provide experimental evidence that a point source of Ca2+ acting upon a negatively charged membrane generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer, which effectively neutralizes the surface charge density of outer leaflet of the bilayer. The mismatch in the surface charge density of the two leaflets leads to nonzero spontaneous curvature. We probe this mismatch through the use of molecular dynamics simulations and validate that calcium ion binding to a lipid membrane is sufficient to generate inward spontaneous curvature, bending the membrane. Additionally, we demonstrate that the formed tubular protrusions can be translated along the vesicle surface in a controlled manner by repositioning the site of localized Ca2+ exposure. The findings demonstrate lipid membrane remodeling in response to local chemical gradients and offer potential insights into the cell membrane behavior under conditions of varying calcium ion concentrations.

Författare

Baharan Ali Doosti

Chalmers, Kemi och kemiteknik, Kemi och biokemi

W. Pezeshkian

Syddansk Universitet

D. S. Bruhn

Syddansk Universitet

J. H. Ipsen

Syddansk Universitet

H. Khandelia

Syddansk Universitet

Gavin Jeffries

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Tatsiana Lobovkina

Chalmers, Kemi och kemiteknik, Kemi och biokemi

Langmuir

07437463 (ISSN) 15205827 (eISSN)

Vol. 33 41 11010-11017

Styrkeområden

Nanovetenskap och nanoteknik

Ämneskategorier (SSIF 2011)

Fysikalisk kemi

DOI

10.1021/acs.langmuir.7b01461

PubMed

28910109

Mer information

Senast uppdaterat

2018-09-06