Mean-square stability analysis of approximations of stochastic differential equations in infinite dimensions
Artikel i vetenskaplig tidskrift, 2017

The (asymptotic) behaviour of the second moment of solutions to stochastic differential equations is treated in mean-square stability analysis. This property is discussed for approximations of infinite-dimensional stochastic differential equations and necessary and sufficient conditions ensuring mean-square stability are given. They are applied to typical discretization schemes such as combinations of spectral Galerkin, finite element, Euler–Maruyama, Milstein, Crank–Nicolson, and forward and backward Euler methods. Furthermore, results on the relation to stability properties of corresponding analytical solutions are provided. Simulations of the stochastic heat equation illustrate the theory.

Asymptotic mean-square stability

Lévy processes

Euler–Maruyama scheme

numerical approximations of stochastic differential equations

spectral methods

linear stochastic partial differential equations

rational approximations

Galerkin methods

finite element methods

Milstein scheme

Författare

Annika Lang

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Andreas Petersson

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Andreas Thalhammer

Johannes Kepler Universität Linz (JKU)

BIT Numerical Mathematics

0006-3835 (ISSN) 1572-9125 (eISSN)

Vol. 57 4 963-990

Ämneskategorier (SSIF 2011)

Beräkningsmatematik

Sannolikhetsteori och statistik

DOI

10.1007/s10543-017-0684-7

Mer information

Senast uppdaterat

2022-10-25