Tractable flux-driven temperature, density, and rotation profile evolution with the quasilinear gyrokinetic transport model QuaLiKiz
Artikel i vetenskaplig tidskrift, 2017

Quasilinear turbulent transport models are a successful tool for prediction of core tokamak plasma profiles in many regimes. Their success hinges on the reproduction of local nonlinear gyrokinetic fluxes. We focus on significant progress in the quasilinear gyrokinetic transport model QuaLiKiz (Bourdelle et al 2016 Plasma Phys. Control. Fusion 58 014036), which employs an approximated solution of the mode structures to significantly speed up computation time compared to full linear gyrokinetic solvers. Optimisation of the dispersion relation solution algorithm within integrated modelling applications leads to flux calculations x 10(6-7) faster than local nonlinear simulations. This allows tractable simulation of flux-driven dynamic profile evolution including all transport channels: ion and electron heat, main particles, impurities, and momentum. Furthermore, QuaLiKiz now includes the impact of rotation and temperature anisotropy induced poloidal asymmetry on heavy impurity transport, important for W-transport applications. Application within the JETTO integrated modelling code results in 1 s of JET plasma simulation within 10 h using 10 CPUs. Simultaneous predictions of core density, temperature, and toroidal rotation profiles for both JET hybrid and baseline experiments are

turbulence

gradient mode

gyrokinetics

turbulence simulations

integrated modelling

barriers

complex error function

tokamak

tokamak

computation

microstability

ratio

aspect

Författare

J. Citrin

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

Dutch Institute for Fundamental Energy Research

C. Bourdelle

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

FJ Casson

Culham Lab

C. Angioni

Max Planck-institutet

N. Bonanomi

Universita' degli Studi di Milano-Bicocca

Consiglo Nazionale Delle Richerche

Y. Camenen

Physique des Interactions Ioniques et Moleculaires

X. Garbet

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

L. Garzotti

Culham Lab

Frank Jenko

Max Planck-institutet

O Gürcan

Laboratoire de physique des plasmas

F. Koechl

Atominstitut der Osterreichischen Universitaten

F. Imbeaux

Le Commissariat à l’Énergie Atomique et aux Énergies Alternatives (CEA)

O. Linder

Technische Universiteit Eindhoven

Dutch Institute for Fundamental Energy Research

K. van de Plassche

Dutch Institute for Fundamental Energy Research

Technische Universiteit Eindhoven

Pär Strand

Chalmers, Rymd- och geovetenskap, Plasmafysik och fusionsenergi

G. Szepesi

Consiglo Nazionale Delle Richerche

Culham Lab

Plasma Physics and Controlled Fusion

0741-3335 (ISSN) 1361-6587 (eISSN)

Vol. 59 12 124005

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

Ämneskategorier

Fusion, plasma och rymdfysik

DOI

10.1088/1361-6587/aa8aeb

Mer information

Senast uppdaterat

2018-09-06