Curvature inequalities for operators of the Cowen-Douglas class
Artikel i vetenskaplig tidskrift, 2017

Let T be an operator tuple in the Cowen-Douglas class B (n) (Omega) for Omega aS, C (m) . The kernels Ker(T - w) (l) , for w a Omega, l = 1, 2, center dot center dot center dot, define Hermitian vector bundles E (T) (l) over Omega. We prove certain negativity of the curvature of E (T) (l) . We also study the relation between certain curvature inequality and the contractive property of T when Omega is a planar domain.

extremal problems

bounded modules

bundles

Författare

Kai Wang

Fudan University

Genkai Zhang

Göteborgs universitet

Chalmers, Matematiska vetenskaper, Analys och sannolikhetsteori

Israel Journal of Mathematics

0021-2172 (ISSN) 15658511 (eISSN)

Vol. 222 1 279-296

Ämneskategorier

Matematik

DOI

10.1007/s11856-017-1590-z

Mer information

Skapat

2017-12-28