Applying geometric K-cycles to fractional indices
Artikel i vetenskaplig tidskrift, 2017

A geometric model for twisted K-homology is introduced. It is modeled after the Mathai–Melrose–Singer fractional analytic index theorem in the same way as the Baum–Douglas model of K-homology was modeled after the Atiyah–Singer index theorem. A natural transformation from twisted geometric K-homology to the new geometric model is constructed. The analytic assembly mapping to analytic twisted K-homology in this model is an isomorphism for torsion twists on a finite CW-complex. For a general twist on a smooth manifold the analytic assembly mapping is a surjection. Beyond the aforementioned fractional invariants, we study T-duality for geometric cycles.

twisted K-homology

19K35

index theory

Primary: 19L50

fractional analytic index

Secondary: 55N20

geometric K-homology

Författare

R.J. Deeley

University of Hawaii

Magnus C H T Goffeng

Leibniz Universität Hannover

Mathematische Nachrichten

0025-584X (ISSN) 1522-2616 (eISSN)

Vol. 290 14-15 2207-2233

Fundament

Grundläggande vetenskaper

Ämneskategorier

Geometri

Matematisk analys

DOI

10.1002/mana.201600039

Mer information

Senast uppdaterat

2021-05-10