Realizing the analytic surgery group of Higson and Roe geometrically part III: higher invariants
Artikel i vetenskaplig tidskrift, 2016

© 2016, Springer-Verlag Berlin Heidelberg. We construct an isomorphism between the geometric model and Higson-Roe’s analytic surgery group, reconciling the constructions in the previous papers in the series on “Realizing the analytic surgery group of Higson and Roe geometrically” with their analytic counterparts. Following work of Lott and Wahl, we construct a Chern character on the geometric model for the surgery group; it is a “delocalized Chern character”, from which Lott’s higher delocalized ρ-invariants can be retrieved. Following work of Piazza and Schick, we construct a geometric map from Stolz’ positive scalar curvature sequence to the geometric model of Higson-Roe’s analytic surgery exact sequence.

Författare

R.J. Deeley

Magnus C H T Goffeng

Chalmers, Matematiska vetenskaper

Göteborgs universitet

Mathematische Annalen

0025-5831 (ISSN) 1432-1807 (eISSN)

Vol. 366 1513-1559

Fundament

Grundläggande vetenskaper

Ämneskategorier

Geometri

Matematisk analys

DOI

10.1007/s00208-016-1365-6