Model-based evaluation of radiation and radiosensitizing agents in oncology
Artikel i vetenskaplig tidskrift, 2018

Radiotherapy is one of the major therapy forms in oncology, and combination therapies involving radiation and chemical compounds can yield highly effective tumor eradication. In this paper, we develop a tumor growth inhibition model for combination therapy with radiation and radiosensitizing agents. Moreover, we extend previous analyses of drug combinations by introducing the tumor static exposure (TSE) curve. The TSE curve for radiation and radiosensitizer visualizes exposure combinations sufficient for tumor regression. The model and TSE analysis are then tested on xenograft data. The calibrated model indicates that the highest dose of combination therapy increases the time until tumor regrowth 10-fold. The TSE curve shows that with an average radiosensitizer concentration of 1.0μg/mL the radiation dose can be decreased from 2.2 Gy to 0.7 Gy. Finally, we successfully predict the effect of a clinically relevant treatment schedule, which contributes to validating both the model and the TSE concept.

Författare

Tim Cardilin

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Joachim Almquist

Chalmers, Biologi och bioteknik, Systembiologi

Mats Jirstrand

Stiftelsen Fraunhofer-Chalmers Centrum för Industrimatematik

A. Zimmermann

Merck KGaA

S. El Bawab

Merck KGaA

J. Gabrielsson

Sveriges lantbruksuniversitet (SLU)

CPT: Pharmacometrics and Systems Pharmacology

21638306 (eISSN)

Vol. 7 1 51-58

Ämneskategorier

Beräkningsmatematik

Bioinformatik och systembiologi

Cancer och onkologi

Styrkeområden

Livsvetenskaper och teknik (2010-2018)

DOI

10.1002/psp4.12268

Mer information

Senast uppdaterat

2021-10-12