A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system
Artikel i vetenskaplig tidskrift, 2006

The stability features of steady states of the spherically symmetric Einstein–Vlasov system are investigated numerically. We find support for the conjecture by Zel'dovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.

Författare

Håkan Andreasson

Göteborgs universitet

Chalmers, Matematiska vetenskaper

Gerhared Rein

Classical and Quantum Gravity

Vol. 23 3659-3677

Ämneskategorier

Matematik

DOI

10.1088/0264-9381/23/11/001

Mer information

Skapat

2017-10-06