Normalization by Evaluation for Martin-Löf Type Theory with Equality Judgements
Artikel i vetenskaplig tidskrift, 2007

The decidability of equality is proved for Martin-Löf type theory with a universe a la Russell and typed beta-eta-equality judgements. A corollary of this result is that the constructor for dependent function types is injective, a property which is crucial for establishing the correctness of the type-checking algorithm. The decision procedure uses normalization by evaluation, an algorithm which first interprets terms in a domain with untyped semantic elements and then extracts normal forms. The correctness of this algorithm is established using a PER-model and a logical relation between syntax and semantics.

Författare

Andreas Abel

Ludwig-Maximilians-Universität München (LMU)

Thierry Coquand

Göteborgs universitet

Peter Dybjer

Chalmers, Data- och informationsteknik, Datavetenskap

Proceedings of 22nd IEEE Annual Symposium on Logic in ComputerScience, Wroclaw, Poland, July 2007.

1043-6871 (ISSN)

3-12
0769529089 (ISBN)

Ämneskategorier

Datavetenskap (datalogi)

DOI

10.1109/lics.2007.33

ISBN

0769529089

Mer information

Senast uppdaterat

2018-03-29