Multiscale techniques for parabolic equations
Artikel i vetenskaplig tidskrift, 2018

We use the local orthogonal decomposition technique introduced in MAlqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the -norm. We present numerical examples, which confirm our theoretical findings.

Författare

Axel Målqvist

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Anna Persson

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Numerische Mathematik

0029-599X (ISSN) 0945-3245 (eISSN)

Vol. 138 1 191-217

Ämneskategorier

Teknisk mekanik

Beräkningsmatematik

Matematisk analys

DOI

10.1007/s00211-017-0905-7

PubMed

29375160

Mer information

Senast uppdaterat

2018-04-06