Signatures of van der Waals binding: A coupling-constant scaling analysis
Artikel i vetenskaplig tidskrift, 2018

The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015)RPPHAG0034-488510.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

Författare

Yang Jiao

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Elsebeth Schröder

Chalmers, Mikroteknologi och nanovetenskap, Kvantkomponentfysik

Per Hyldgaard

Chalmers, Mikroteknologi och nanovetenskap, Elektronikmaterial

Physical Review B

2469-9950 (ISSN) 2469-9969 (eISSN)

Vol. 97 8 085115

Styrkeområden

Nanovetenskap och nanoteknik

Livsvetenskaper och teknik (2010-2018)

Materialvetenskap

Ämneskategorier (SSIF 2011)

Fysikalisk kemi

Fysik

Atom- och molekylfysik och optik

Annan fysik

Teoretisk kemi

Den kondenserade materiens fysik

Infrastruktur

C3SE (Chalmers Centre for Computational Science and Engineering)

DOI

10.1103/PhysRevB.97.085115

Mer information

Senast uppdaterat

2023-06-15