LIGNIN HYDROTHERMAL LIQUEFACTION IN SUBCRITICAL WATER TO PRODUCE BIOFUEL AND CHEMICALS
Doktorsavhandling, 2018
In this work, hydrothermal liquefaction (HTL) of LignoBoost kraft lignin has been carried out in a small pilot plant, using sub-critical water as the medium, ZrO2, K2CO3/Na2CO3 and/or KOH/NaOH as the catalytic system, methanol as the co-solvent and phenol as the capping agent to suppress repolymerisation (e.g. formation of char). With the aim of developing the HTL process, different investigations were carried out to study the influence of methanol, the pH (8.9-10.4) through the use of different concentrations of potassium hydroxide and the use of phenol as the capping agent (2-10%); different fractions of sodium in alkali (Na/(Na+K) from 0.0-1.0) were also investigated. The reactions were performed in a fixed-bed reactor (500 cm3) at 350°C with the exception of the methanol investigation, where it was varied between 280 and 350°C, and a pressure of 25 MPa. The reactor outlet was comprised mainly of two liquid phases: one aqueous and one oil.
The pH and methanol investigations showed different results in terms of operability and yields. The yields of bio-oil, WSO and char were affected by different levels of pH and concentrations of methanol. In addition, the use of methanol led to operational difficulties due to the extensive formation of solids. For the phenol and sodium/potassium investigations, the overall yield was not affected considerably either by different phenol concentrations (2-10%) or sodium fractions in the alkali. It was possible to lower the phenol concentration in the feed to 2% and maintain fairly constant overall yields. In the case of the sodium series, it was shown that it was also possible to replace the potassium ion in the feed with the sodium ion without it having a strong effect on the product yield. This HTL process gave the same major individual compounds such as guaiacol, anisole, catechol and alkylphenols, in all of the investigations undertaken, with different trends and influences being observed depending on the parameters studied.
Biomass valorisation
base depolymerisation
biofuel
lignin
green chemicals.
Författare
Tallal Belkheiri
Chalmers, Kemi och kemiteknik, Kemiteknik
Kraft Lignin Depolymerization in Near-Critical Water: Effect of Changing Co-Solvent
Cellulose Chemistry and Technology,;Vol. 48(2014)p. 813-818
Artikel i vetenskaplig tidskrift
Effect of pH on Kraft Lignin Depolymerisation in Subcritical Water
Energy & Fuels,;Vol. 30(2016)p. 4916-4924
Artikel i vetenskaplig tidskrift
Hydrothermal liquefaction of kraft lignin in sub-critical water: Influence of phenol as capping agent. Tallal Belkheiri, Sven-Ingvar Andersson, Cecilia Mattsson, Lars Olausson, Hans Theliander and Lennart Vamling. Energy & Fuels (submitted).
Hydrothermal liquefaction of kraft lignin in sub-critical water: Influence of the sodium and potassium fraction. Tallal Belkheiri, Sven-Ingvar Andersson, Cecilia Mattsson, Lars Olausson, Hans Theliander and Lennart Vamling. Biomass Conversion and Biorefinery (Accepted).
Styrkeområden
Energi
Ämneskategorier
Kemiska processer
Annan kemiteknik
Bioenergi
ISBN
978-91-7597-703-4
Doktorsavhandlingar vid Chalmers tekniska högskola. Ny serie: 4384
Utgivare
Chalmers
Hall KA, Kemigården 4, Chalmers
Opponent: Professor Jalel Labidi, University of the Basque Country, Spain