Transferring the entatic-state principle to copper photochemistry
Artikel i vetenskaplig tidskrift, 2018

The entatic state denotes a distorted coordination geometry of a complex from its typical arrangement that generates an improvement to its function. The entatic-state principle has been observed to apply to copper electron-transfer proteins and it results in a lowering of the reorganization energy of the electron-transfer process. It is thus crucial for a multitude of biochemical processes, but its importance to photoactive complexes is unexplored. Here we study a copper complex-with a specifically designed constraining ligand geometry-that exhibits metal-to-ligand charge-transfer state lifetimes that are very short. The guanidine-quinoline ligand used here acts on the bis(chelated) copper(I) centre, allowing only small structural changes after photoexcitation that result in very fast structural dynamics. The data were collected using a multimethod approach that featured time-resolved ultraviolet-visible, infrared and X-ray absorption and optical emission spectroscopy. Through supporting density functional calculations, we deliver a detailed picture of the structural dynamics in the picosecond-to-nanosecond time range.

Författare

B. Dicke

Universität Hamburg

Center for Free-Electron Laser Science (CFEL)

A. Hoffmann

RWTH Aachen University

J. Stanek

RWTH Aachen University

M. S. Rampp

Ludwig-Maximilians-Universität München (LMU)

B. Grimm-Lebsanft

Universität Hamburg

Center for Free-Electron Laser Science (CFEL)

F. Biebl

Center for Free-Electron Laser Science (CFEL)

Universität Hamburg

D. Rukser

Center for Free-Electron Laser Science (CFEL)

Universität Hamburg

B. Maerz

Ludwig-Maximilians-Universität München (LMU)

D. Goeries

Deutsches Elektronen-Synchrotron (DESY)

M. Naumova

Universität Hamburg

Universität Paderborn

M. Biednov

Universität Hamburg

Center for Free-Electron Laser Science (CFEL)

G. Neuber

Center for Free-Electron Laser Science (CFEL)

Universität Hamburg

A. Wetzel

Universität Hamburg

Center for Free-Electron Laser Science (CFEL)

S. M. Hofmann

Ludwig-Maximilians-Universität München (LMU)

P. Roedig

Deutsches Elektronen-Synchrotron (DESY)

A. Meents

Deutsches Elektronen-Synchrotron (DESY)

J. Bielecki

European XFEL

Uppsala universitet

Jakob Andreasson

Uppsala universitet

Chalmers, Fysik, Kondenserade materiens fysik

K. R. Beyerlein

Center for Free-Electron Laser Science (CFEL)

H. N. Chapman

Deutsches Elektronen-Synchrotron (DESY)

Center for Free-Electron Laser Science (CFEL)

C. Bressler

European XFEL

Danmarks Tekniske Universitet (DTU)

Universität Hamburg

W. Zinth

Ludwig-Maximilians-Universität München (LMU)

M. Ruebhausen

Universität Hamburg

Center for Free-Electron Laser Science (CFEL)

S. Herres-Pawlis

RWTH Aachen University

Nature Chemistry

1755-4330 (ISSN) 1755-4349 (eISSN)

Vol. 10 3 355-362

Ämneskategorier (SSIF 2011)

Atom- och molekylfysik och optik

Annan fysik

Teoretisk kemi

DOI

10.1038/nchem.2916

PubMed

29461525

Mer information

Senast uppdaterat

2018-04-03