Determining the conductivity for a nonautonomous hyperbolic operator in a cylindrical domain
Artikel i vetenskaplig tidskrift, 2018

This paper is devoted to the reconstruction of the conductivity coefficient for a nonautonomous hyperbolic operator an infinite cylindrical domain. Applying a local Carleman estimate, we prove the uniqueness and a Hölder stability in the determination of the conductivity using a single measurement data on the lateral boundary. Our numerical examples show good reconstruction of the location and contrast of the conductivity function in 3 dimensions.

infinite domain

time- and space-dependent coefficient

Carleman estimate

hyperbolic equation

inverse problem

Författare

Larisa Beilina

Chalmers, Matematiska vetenskaper, Tillämpad matematik och statistik

Göteborgs universitet

M. Cristofol

Institut de Mathematiques de Marseille

Shumin Li

University of Science and Technology of China

Mathematical Methods in the Applied Sciences

0170-4214 (ISSN) 1099-1476 (eISSN)

Vol. 41 2012-2030

Ämneskategorier

Beräkningsmatematik

Geofysik

Matematisk analys

DOI

10.1002/mma.4728